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We have seen that a confidence interval associated with an estimator for quantity θ can be constructed
relatively easily if the sampling distribution of θ is normal, and if the variance of the sampling distribution
can be estimated (Probably it’s a good time to remind yourself that the standard error ‘se’ is the square-root

of the variance of the sampling distribution, and that the normal-based confidence interval is θ̂n ± zα/2ŝen).
In some cases, even if the sampling distribution is not normal, say because the sample size is too small, but
if the IID sample X1, X2, · · · , Xn has normal distribution, then we can use workarounds like using Student’s
t-distribution, and still construct a proper 1− α confidence interval.

Unfortunately, estimating the variance of sampling distribution is not always easy. This could be because
the quantity θ is a complex function of the CDF, or because it is a nonlinear statistical functional.

First consider the case where the quantity to be estimated is somewhat complex. The skewness of a
distribution is defined as:

κ3 =
1

σ3

∫
(x− µ)3p(x)dx (1)

The skewness measures asymmetry of a distribution. For example, the normal distribution being completely
symmetric has skewness equal to zero. The plug-in estimator for skewness is:

κ̂3 =
1

nσ̂3

n∑
i=1

(Xi −Xn)3 (2)

Once we estimate κ3 using this estimator, if we decide to construct 1 − α confidence interval, we will need
to find out the variance of κ̂3. However, because the formula involves σ̂3 in the denominator, we cannot use
the formula for the variance of the linear combination. Thus, it is not immediately clear how we can find
κ̂3, and consequently the standard error.

Now consider the case for which the quantity to be estimated is a nonlinear statistical functional of the
CDF. As you already know, the median of a distribution is defined as the value x such that F (x) = 0.5.
In other words, the median is the value such that the probability that the random variable takes value less
than median is exactly 0.5. Consider a linear combination H(x) = aF (x) + (1− a)G(x) of two CDFs F and
G where a ∈ [0, 1]. It is easy to verify that H(x) is a valid CDF. It turns out that in general:

T (H) = T (aF + (1− a)G) 6= aT (F ) + (1− a)T (G) (3)

and so median is not a linear statistical functional. Now suppose we want to estimate the median M from
the IID sample X1, X2, · · · , Xn. Consider the following estimator:

M̂ =


Yn+1

2
if n is odd

1
2 (Yn

2
+ Yn

2 +1) otherwise

(4)
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Here Yj represent the sample Xi sorted in ascending order. It is not at all clear how we can compute V(M̂).

These two examples show that we need a method to find confidence intervals for quantities of interest that
works when direct computation of the variance is not possible. A method of choice in such cases is boot-
strap. Actually, this method is a particular method in the large class of resampling methods. The idea
behind bootstrap is to try to estimate the sampling distribution of the quantity of interest. The variance of
the sampling distribution is then estimated by computing the variance of this estimated sampling distribu-
tion. The method was introduced by Bradley Efron in 1979.

Bootstrapping to estimate the variance of the estimator θ̂ = T (F ) consists of two distinct steps:

1. First, replace VF (θ̂n) by VF̂n
(θ̂n)). Here VF denotes the variance assuming that the underlying CDF

is F , whereas VF̂n
(θ̂n)) is the variance computed assuming that the underlying distribution is F̂n

2. Now estimate VF̂n
(θ̂n) as follows. Draw many (say N) samples, each of size n from F̂n. Then compute

a bootstrap replication θ̂∗n of θ̂n for each of these samples:

θ̂∗n,j = g(X∗1,j , X
∗
2,j , · · · , X∗n,j)

Here X∗1,j , X
∗
2,j , · · · , X∗n,j is jth sample drawn from F̂n, and g is the function that converts the sample

into the value of the estimator. How do we draw this sample? Notice that each sample point Xi

contributes weight 1/n to F̂n. Hence, it should be drawn with probability 1/n. In other words, a
bootstrap sample is simply obtained by uniformly randomly drawing one value at a time from the
original sample with replacement!

Finally, compute the sample variance of θ̂∗n values as an estimate of VF̂n
(θ̂n):

Vboot(θ̂n) =
1

N

N∑
j=1

(
θ̂∗n,j −

1

N

N∑
i=1

θ̂∗n,i

)2

(5)

Notice that VF̂n
(θ̂n) can be estimated with arbitrarily large accuracy since the total number of bootstrap

samples N can be arbitrarily large. However, the first step depends on the sample size n. Hence the jus-
tification of replacing VF (θ̂n) by VF̂n

(θ̂n)) depends on the sample size n, and unless it is large, we can’t
decrease the size of the confidence interval no matter how many bootstrap replications we perform.

Once the variance of the sampling is estimated in this fashion, the estimated standard error is simply the
square-root of the variance:

ŝeboot =

√
Vboot(θ̂n) (6)

Now, if again assume that θ̂n has normal distribution, the bootstrap confidence interval is given by:

θ̂n ± zα/2ŝeboot

Even when the distribution of θ̂n is not normal, bootstrapping provides ways to construct a 1− α confi-
dence interval, however, here we will not discuss such cases.

Failure of bootstrap

At this point, we should take note of a very important fact about the bootstrap. As we saw above, the idea of
the bootstrap is to estimate the sampling distribution of some quantity θ (which could be median, mean, or
anything that needs to be estimated). The hope is that as the sample size n→∞, the estimated distribution
will converge to the true distribution. However, this may not always happen. Here is an example (probably
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the most famous one). Let X1, X2, · · · , Xn ∼ U(0, θ) where U(0, θ) denotes the uniform distribution over
the interval [0, θ]. Now consider the following estimator for θ:

θ̂n = max{X1, X2, · · · , Xn}

That is, we simply pick the maximum value from the sample as an estimate of the maximum possible value of
the radnom variable. Consider using bootstrap to estimate sampling distribution of θ̂n. It is easy to see that
the true sampling distribution of θ̂n is continuous given that the original distribution U(0, θ) is continuous.
We then expect that as n → ∞, we should get a continuous distribution even when we use bootstrap to
estimate it. However, as the following argument shows, this is not true.

As before, let θ̂∗n denote a bootstrap replication of θ̂n. Let’s find out the probability that θ̂∗n is equal to θ̂n:

P(θ̂∗n = θ̂n) = 1− P(θ̂∗n 6= θ̂n) = 1− P(X∗1 6= θ̂n, X
∗
2 6= θ̂n, · · · , X∗n 6= θ̂n) = 1−

(
1− 1

n

)n
Hence,

lim
n→∞

P(θ̂∗n = θ̂n) = 1− 1

e
≈ 0.632

However, since the distribution of θ̂n is continuous, this probability should have been zero (Recall that the
probability density is different from probability), and that doesn’t happen here. Thus, the estimated sampling
distribution does not converge to the true sampling distribution even in the limit, and thus bootstrap fails.
When you wish to apply bootstrap for a particular problem, it is best to make sure that the procedure will
not fail in this fashion. You may want to have a look at this reference to understand more about such issues.
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