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Networks




Networks/Graphs

» Points connected by lines
» Points: nodes/vertices/actors

» Lines: links/edges/ties




Real-world networks

v

Social: Facebook, Friendships, Scientific collaborations

v

Biological: Human brain, Metabolic reactions

v

Technological: Internet, World-Wide-Web

» Transport: Airports-Air routes, Cities-Highways



Two-questions

What are the nodes?

What are the links?



Is this a network?
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When is a network description useful?
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When is a network description useful?

» Sparse data
» Lack of regularity

» Lack of a better model



Adjacency matrix

Adjacency matrix: Binary matrix of size N x N

ij =

A — {1 ¢ and j connected

0 ¢ and j not connected



Degree

Degree of a vertex:

Average degree of the network:

1



Complex networks
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» Complex: Edge of order and randomness
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Complex networks

» Complex: Edge of order and randomness

» Structure vs Processes
» Spreading of epidemics, rumors, ideas

» Traffic

» Neuronal dynamics

» Structure is intersting on its own!



Simplifications
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» Undirected

» Unweighted

» Static




Large-scale structure of complex networks

» Small-scale structures:
> degree
» local clustering
» centrality scores

» Meso-scale structures:
» motifs
» vertex similarity
» rich-club effect

» Large-scale structures:

components and percolation
small-world effect

ranking

degree distribution
assortative mixing

>
>
>
>
>
» community structure



Degree-distrbution
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Degree distribution




Metabolic network of the worm C-elegans

250



Degree distribution of the real world networks
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Degree distribution of the real-world networks
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Power-laws and scale-free networks

Inp(k) = —alnk+c

p(k) =Ck™ Yk > kmin




Detecting and visualizing power-laws

How do we know that a given distribution is a power-law?
(FOI" k> kmin)

> Creating a log-log plot




Detecting and visualizing power-laws

Power-law is tricky!




Detecting and visualizing power-laws

» Logarthmic binning: next bin is fixed multiple wider than
the previous one

» Better but still noisy




Detecting and visualizing power-laws

Cumulative distribution



Detecting and visualizing power-laws

A portion of the internet

Log-log scale Logarthmic bins Cumulative

PK)

'Taken from the website of Mark Newman



Calculation of the scaling exponent

Statistical error on «




Validating power-laws

“Power-law distributions in empirical data.”
Clauset, Shalizi, and Newman. SIAM review 51.4 (2009): 661-703.



Assortative mixing



1ve mixing

Assortat

ildren with two races: Black and White

ch

Social network of school




Assortative mixing

v

Social networks: race, age, physical locations, language,
income, educational level

v

Citation networks: topics of the study

v

World Wide Web: contents of the webpages

v

Internet: physical locations



v

v

v

v

v

Assortative mixing by enumerative characteristics

Characteristics with a finite set of values
No ordering

Nationality, Gender, Race

Assortative mixing by scalar characteristics

Characteristics with a finite or infinite set of values
Ordering

Age, income, degree



v

v

v

v

v

Assortative mixing by enumerative characteristics

Characteristics with a finite set of values
No ordering

Nationality, Gender, Race

Assortative mixing by scalar characteristics

Characteristics with a finite or infinite set of values
Ordering

Age, income, degree



The network is assortative if a large fraction of the edges fall
between vertices of the same type

If the opposite is true, the network is called dissortative



Quantification for enumerative characteristics
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Quantification for enumerative characteristics

» Fraction of edges connecting vertices of the same type?

» Maximize: Actual number of edges between the same type
minus the number of expected edges between the same

types

» Has value 0 in trivial cases



Number of edges between the same types

¢; : the class or type of vertex i
ne @ total number of types

Total number of edges between the vertices of the same type:

Z 0(i,7) ZAWS (ciycy)

edges(i,7)



Expected number of edges between the same types

» Half-edges or stubs, degrees preserved

» For a given stub at vertex ¢, there are 2m — 1 stubs to
which it can connect to

» Probability of connecting vertex j is 2%

» Expected number of edges between ¢ and j is 2’;;’?1

» Expected number of edges between all the pairs of the

same type:
1 kik;
5 %: 2m 6(Ci, C])




kik;




Q is called the modularity of the network w.r.t. to ¢

kik;

Big =i =5,




Normalized modularity

Modularity is not 1 even for a perfectly mixed network.



Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

1 kik;
Qmax = % 2m — ; o 5(61'7 Cj)



Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

1 kik;
Qmax =—|2m - Z 27nj (S(Ci,Cj)

2m —
ij

Q

Qnorm = Qmax




Quantification for scalar characteristics

x; . a scalar value for vertex i

Z(A” — kzlk‘j/2m)$l$3
tj
Z(k:,é” — k,kj/Qm):c,:c]

ij

T =




Degree-correlations/Degree-assortativity

» Using degree itself as a scalar property of the nodes
» Degree is the property of the network structure

» One property (degree) dictating the others (position of the
edges)



Network n r
Physics coauthorship (a) 52909 0.363
Biology coauthorship (a) 1520251 0.127
Mathematics coauthorship (b) 253339 0.120
Film actor collaborations (c) 449913 0.208
Company directors (d) 7673 0.276
Internet (e) 10697 —0.189
World-Wide Web (f) 269504 —0.065
Protein interactions (g) 2115 —0.156
Neural network (h) 307 —(.163
Marine food web (i) 134 —0.247
Freshwater food web (j) 92 —0.276

2Newman, M.E.J., Assortative Mixing in Networks, PRL, 89, 20.



Random graph models

v

Better way to describe the structure of the networks

Generative models of networks

v

v

Probabilistic models capable of generating an observed data

v

Certain properties can be fixed for generative models
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dataset = |

dataset = I

dataset = il

dataset = IV

50 7.5 100 125 150 175
x

50 75 100 125 150 175
x

v

v

v

v

v

Mean of z =9
Variance of z = 11
Mean of y = 7.5
Variance of y = 4.125

Correlation = 0.816

Anscombe’s quartet!



Random graph models (RGMs)

» Erdos-Rényi model

» Configuration model

» Stochastic-block model

» Degree-corrected SBM

» Equitable random graphs

» Hierarchical block models

» Random graphs with expected degrees
» Microcanonical SBM

» Poisson SBM



Erdos-Rényi model (ER model/G(n,p))

v

Fix n and the average degree ¢

c
n—1

v

Connect every pair of nodes with a probability p =

Number of graphs in the ensemble: 2(3)

v

v

ER model: Every member of the ensemble is equally likely




Properties of the ER model

Average properties of the ensemble

<m>=3" PGm(G) = %Z m(G)
G G



Properties of the ER model

Degree distribution

» Given vertex can connect to remaining n — 1 vertices

» Probability of connecting to particular k vertices:
P p)

» There are (";1) ways to choose k vertices

k

pr= ("L —p) R = ey



The giant component

What is the size of the largest component?



The giant component

» Giant component: size is an extensive function of the
network size

» Transition between the two extremes with p: gradual or
sudden?

> Size of the giant component as a function of p can be
calculated exactly in the limit



The giant component

u : Fraction of vertices not in the giant component
When is a vertex ¢ not in the giant component?

For any other vertex j:

1. ¢ is not connected to j

2. 1 is connected to j but j is not in the giant component



The giant component

u : Fraction of vertices not in the giant component

When is a vertex ¢ not in the giant component?

For any other vertex j:

1. 7 is not connected to 5 = probability =1—1p

2. 4 is connected to j but j is not in the giant component
= probability = pu

Thus, the probability of not being connected to the giant com-
ponent through vertex j is (1 — p + pu)



U= efc(lfu)

Let S be the size of the giant component

l-8=e




Graphical solution for the giant component

1.0

— ¢=0.5 ’







c<lande>1




Network science researchers




Small components



Small components

Two giant components?
Distinct pairs (7, j) with i in S; and j in Sy : S1n x Son = S1S9n?

Probability that there is no edge between the two:

S1Son?
g=(1-p)Ssm* = <1 - ) ~ g~ CS152m
n—1



Sizes of the small components

s : probability that a randomly chosen vertex belongs to
component of size s

—1-8

s=1

Small-components are trees!



Tree graph

» A graph without loops
» n vertices and n — 1 edges

» Removal of any vertex or edge
witll disconnect the graph






Small components

Small components are trees
1

(;) —(s=D=5(s-1(s-2)

The total number of extra edges:

%(s 1) (s — 2)ﬁ =0









For degree 3 vertex,
P(s|k =3) = 75, s, sy

S1+Sy+s3=s—1



For degree 3 vertex,
P(s|k =3) = 75, s, sy

S1+Sy+s3=s—1

s1=0s2=0 s,=0 [j=1

0o 00 00 k
P(slk)=>" > - > {H%J] 6(8—1,2%-)



For degree 3 vertex,
P(s|k =3) = 75, s, sy

S1+Sy+s3=s—1

0o 00 00 k
Pislt) =N ST s | 05— 1. s5)
J

s1=0s2=0 s,=0 [j=1

Ts = Zka(S“{J)
k=0

oo
< s >= ans
s=0



<8>:1—c+cS



<8>:1—c+cS

R:2—c+cS



Size

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0



Configuration model

» Model with a given degree sequence
» More realistic and more flexible

» Can be solved exactly in the limit



Configuration model

» Specify k; fori=1,2,--- ,n

> Every vertex ¢ has k;
half-edges/stubs

)

» Randomly connect stubs to each
other

» Every matching appears with
equal probability



Configuration model

Do all graphs appear with equal probability?



Configuration model

Do all graphs appear with equal probability?

More than one matchings can correspond to the same graph




Configuration model

Number of matchings for the network N: N({k;}) =[], k!

Thus, networks do occur with equal probability!



Configuration model




Configuration model

Hi ki

N =
[Tic; Aij' TT; Aii!

nll=n(n—-2)(n—4)---2

Graphs do not appear with equal probability!



Summary

v

Many real networks have fat-tailed degree distributions

v

Naturally occuring networks tend be dissortative by degree

v

Social networks tend to be assortative by degree

v

Random graphs provide a powerful way to describe the
large-scale structure of complex networks

www.snehalshekatkar.com/serc2018
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