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Networks/Graphs

I Points connected by lines

I Points: nodes/vertices/actors

I Lines: links/edges/ties



Real-world networks

I Social: Facebook, Friendships, Scientific collaborations

I Biological: Human brain, Metabolic reactions

I Technological: Internet, World-Wide-Web

I Transport: Airports-Air routes, Cities-Highways



Two-questions

What are the nodes?

What are the links?



Is this a network?
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When is a network description useful?

I Sparse data

I Lack of regularity

I Lack of a better model
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Adjacency matrix

Adjacency matrix: Binary matrix of size N ×N

Aij =

{
1 i and j connected

0 i and j not connected



Degree
Degree of a vertex:

ki =
∑
j

Aij

Average degree of the network:

< k >=
1

N

∑
i

ki



Complex networks

I Complex: Edge of order and randomness

I Structure vs Processes
I Spreading of epidemics, rumors, ideas

I Traffic

I Neuronal dynamics

I Structure is intersting on its own!
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Simplifications

I Simple

I Undirected

I Unweighted

I Static



Large-scale structure of complex networks

I Small-scale structures:
I degree
I local clustering
I centrality scores

I Meso-scale structures:
I motifs
I vertex similarity
I rich-club effect

I Large-scale structures:
I components and percolation
I small-world effect
I ranking
I degree distribution
I assortative mixing
I community structure



Degree-distrbution

Total 10 vertices

p1 =
3

10

p2 =
2

10

p3 =
2

10

p4 =
2

10

p5 =
1

10



Degree distribution
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Metabolic network of the worm C-elegans
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Degree distribution of the real world networks
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Degree distribution of the real-world networks
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Power-laws and scale-free networks
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Detecting and visualizing power-laws

How do we know that a given distribution is a power-law?
(For k > kmin)

I Creating a log-log plot
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Detecting and visualizing power-laws

Power-law is tricky!
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Detecting and visualizing power-laws
I Logarthmic binning: next bin is fixed multiple wider than

the previous one

I Better but still noisy
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Figure:



Detecting and visualizing power-laws

Cumulative distribution

P (k) =

∞∑
k′=k

p(k′)

P (k) = C

∞∑
k′=k

k′
−α ≈ C

∫ ∞
k

k′
−α
dk′ =

C

α− 1
k−(α−1)



Detecting and visualizing power-laws

A portion of the internet 1

Log-log scale
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1Taken from the website of Mark Newman



Calculation of the scaling exponent

α = 1 +
N[∑

i

ki
kmin− 1

2

]
Statistical error on α

σ =
α− 1√
N



Validating power-laws

“Power-law distributions in empirical data.”
Clauset, Shalizi, and Newman. SIAM review 51.4 (2009): 661-703.



Assortative mixing

Social network of school-children with two races: Black and White



Assortative mixing

Social network of school-children with two races: Black and White



Assortative mixing

I Social networks: race, age, physical locations, language,
income, educational level

I Citation networks: topics of the study

I World Wide Web: contents of the webpages

I Internet: physical locations



Assortative mixing by enumerative characteristics

I Characteristics with a finite set of values

I No ordering

I Nationality, Gender, Race

Assortative mixing by scalar characteristics

I Characteristics with a finite or infinite set of values

I Ordering

I Age, income, degree
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The network is assortative if a large fraction of the edges fall
between vertices of the same type

If the opposite is true, the network is called dissortative



Quantification for enumerative characteristics

I Fraction of edges connecting vertices of the same type?

I Maximize: Actual number of edges between the same type
minus the number of expected edges between the same
types

I Has value 0 in trivial cases
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Number of edges between the same types

ci : the class or type of vertex i

nc : total number of types

Total number of edges between the vertices of the same type:∑
edges(i,j)

δ(i, j) =
1

2

∑
i,j

Aijδ(ci, cj)



Expected number of edges between the same types

I Half-edges or stubs, degrees preserved

I For a given stub at vertex i, there are 2m− 1 stubs to
which it can connect to

I Probability of connecting vertex j is
kj
2m

I Expected number of edges between i and j is
kikj
2m−1

I Expected number of edges between all the pairs of the
same type:

1

2

∑
ij

kikj
2m

δ(ci, cj)



1

2

∑
i,j

Aijδ(ci, cj)−
1

2

∑
ij

kikj
2m

δ(ci, cj) =
1

2

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Q is called the modularity of the network w.r.t. to c

Bij = Aij −
kikj
2m



1

2

∑
i,j

Aijδ(ci, cj)−
1

2

∑
ij

kikj
2m

δ(ci, cj) =
1

2

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Q is called the modularity of the network w.r.t. to c

Bij = Aij −
kikj
2m



Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

Qmax =
1

2m

2m−
∑
ij

kikj
2m

δ(ci, cj)



Qnorm =
Q

Qmax
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Quantification for scalar characteristics

xi : a scalar value for vertex i

r =

∑
ij

(Aij − kikj/2m)xixj∑
ij

(kiδij − kikj/2m)xixj



Degree-correlations/Degree-assortativity

I Using degree itself as a scalar property of the nodes

I Degree is the property of the network structure

I One property (degree) dictating the others (position of the
edges)



2

2Newman, M.E.J., Assortative Mixing in Networks, PRL, 89, 20.



Random graph models

I Better way to describe the structure of the networks

I Generative models of networks

I Probabilistic models capable of generating an observed data

I Certain properties can be fixed for generative models
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Random graph models (RGMs)

I Erdős-Rényi model

I Configuration model

I Stochastic-block model

I Degree-corrected SBM

I Equitable random graphs

I Hierarchical block models

I Random graphs with expected degrees

I Microcanonical SBM

I Poisson SBM



Erdős-Rényi model (ER model/G(n, p))

I Fix n and the average degree c

I Connect every pair of nodes with a probability p = c
n−1

I Number of graphs in the ensemble: 2(n2)

I ER model: Every member of the ensemble is equally likely



Properties of the ER model

Average properties of the ensemble

< m >=
∑
G

P (G)m(G) =
1

Ω

∑
G

m(G)



Properties of the ER model

Degree distribution

I Given vertex can connect to remaining n− 1 vertices

I Probability of connecting to particular k vertices:

pk(1− p)n−1−k

I There are
(
n−1
k

)
ways to choose k vertices

pk =
(
n−1
k

)
pk(1− p)n−1−k = e−c c

k

k!



The giant component

p = 0 p = 1

What is the size of the largest component?



The giant component

I Giant component: size is an extensive function of the
network size

I Transition between the two extremes with p: gradual or
sudden?

I Size of the giant component as a function of p can be
calculated exactly in the limit



The giant component

u : Fraction of vertices not in the giant component

When is a vertex i not in the giant component?

For any other vertex j:

1. i is not connected to j

2. i is connected to j but j is not in the giant component



The giant component

u : Fraction of vertices not in the giant component

When is a vertex i not in the giant component?

For any other vertex j:

1. i is not connected to j ⇒ probability = 1− p

2. i is connected to j but j is not in the giant component
⇒ probability = pu

Thus, the probability of not being connected to the giant com-
ponent through vertex j is (1− p+ pu)



u = (1− p+ pu)n−1

u =

(
1− c

n− 1
+ p

c

n− 1

)n−1
=

[
1− c

n− 1
(1− u)

]n−1

u = e−c(1−u)

Let S be the size of the giant component

∴ 1− S = e−cS



Graphical solution for the giant component
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d

dS
(1− e−cS)

∣∣∣
S=0

= 1

∴ ce−cS
∣∣∣
S=0

= 1

∴ c = 1



c < 1 and c > 1



Network science researchers



Small components



Small components

Two giant components?

Distinct pairs (i, j) with i in S1 and j in S2 : S1n×S2n = S1S2n
2

Probability that there is no edge between the two:

q = (1− p)S1S2n2
=

(
1− c

n− 1

)S1S2n2

∼ e−cS1S2n



Sizes of the small components

πs : probability that a randomly chosen vertex belongs to
component of size s

∞∑
s=1

= 1− S

Small-components are trees!



Tree graph

I A graph without loops

I n vertices and n− 1 edges

I Removal of any vertex or edge
witll disconnect the graph





Small components

Small components are trees

(
s

2

)
− (s− 1) =

1

2
(s− 1)(s− 2)

The total number of extra edges:

1

2
(s− 1)(s− 2)

c

n− 1
→ 0







For degree 3 vertex,

P (s|k = 3) = πs1πs2πs3

s1 + s2 + s3 = s− 1

P (s|k) =

∞∑
s1=0

∞∑
s2=0

· · ·
∞∑
sk=0

 k∏
j=1

πsj

 δ(s− 1,
∑
j

sj)

πs =
∞∑
k=0

pkP (s|k)

< s >=

∞∑
s=0

sπs
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Configuration model

I Model with a given degree sequence

I More realistic and more flexible

I Can be solved exactly in the limit



Configuration model

I Specify ki for i = 1, 2, · · · , n

I Every vertex i has ki
half-edges/stubs

I
∑
i
ki = 2m

I Randomly connect stubs to each
other

I Every matching appears with
equal probability



Configuration model

Do all graphs appear with equal probability?

More than one matchings can correspond to the same graph
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Configuration model

Number of matchings for the network N : N({ki}) =
∏
i ki!

Thus, networks do occur with equal probability!



Configuration model
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Configuration model

N =

∏
i ki!∏

i<j Aij !
∏
iAii!!

n!! = n(n− 2)(n− 4) · · · 2

Graphs do not appear with equal probability!



Summary

I Many real networks have fat-tailed degree distributions

I Naturally occuring networks tend be dissortative by degree

I Social networks tend to be assortative by degree

I Random graphs provide a powerful way to describe the
large-scale structure of complex networks

www.snehalshekatkar.com/serc2018
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