Large-scale structure of complex networks (Part 1)

Snehal M. Shekatkar

Centre for modeling and simulation, S.P. Pune University, Pune

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Networks/Graphs

- Points connected by lines
- ▶ Points: nodes/vertices/actors

(日)、(四)、(日)、(日)、

▶ Lines: links/edges/ties

- ▶ Social: Facebook, Friendships, Scientific collaborations
- ▶ **Biological**: Human brain, Metabolic reactions
- ▶ Technological: Internet, World-Wide-Web
- ▶ Transport: Airports-Air routes, Cities-Highways

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

What are the nodes?

What are the links?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Is this a network?

うしつ 川田 ふぼう ふぼう ふしゃ

Is this a network?

うしつ 川田 ふぼう ふぼう ふしゃ

Is this a network?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Sparse data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

- Sparse data
- ► Lack of regularity

- Sparse data
- Lack of regularity
- ▶ Lack of a better model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Adjacency matrix

Adjacency matrix: Binary matrix of size $N\times N$

$$A_{ij} = \begin{cases} 1 & i \text{ and } j \text{ connected} \\ 0 & i \text{ and } j \text{ not connected} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Degree

Degree of a vertex:

$$k_i = \sum_j A_{ij}$$

Average degree of the network:

$$\langle k \rangle = \frac{1}{N} \sum_{i} k_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

▶ Complex: Edge of order and randomness

・ロト ・ 日 ・ モー・ モー・ うへぐ

▶ Complex: Edge of order and randomness

ション ふゆ マ キャット キャット しょう

Structure vs Processes

- ▶ Spreading of epidemics, rumors, ideas
- ► Traffic
- ▶ Neuronal dynamics

▶ Complex: Edge of order and randomness

Structure vs Processes

- ▶ Spreading of epidemics, rumors, ideas
- ► Traffic
- ▶ Neuronal dynamics

Structure is intersting on its own!

うして ふゆう ふほう ふほう ふしつ

Simplifications

- ► Simple
- ► Undirected
- ► Unweighted

・ロト ・御 ト ・ ヨト ・ ヨト … ヨー

► Static

Large-scale structure of complex networks

Small-scale structures:

- ► degree
- local clustering
- centrality scores

Meso-scale structures:

- motifs
- vertex similarity
- rich-club effect

► Large-scale structures:

components and percolation

ション ふゆ マ キャット キャット しょう

- small-world effect
- ranking
- degree distribution
- assortative mixing
- community structure

Degree-distrbution

Total 10 vertices

 $p_1 = \frac{3}{10}$ $p_2 = \frac{2}{10}$ $p_3 = \frac{2}{10}$ $p_4 = \frac{2}{10}$ $p_5 = \frac{1}{10}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Degree distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Metabolic network of the worm C-elegans

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A(で)

Degree distribution of the real world networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Degree distribution of the real-world networks

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Power-laws and scale-free networks

$$\ln p(k) = -\alpha \ln k + c$$
$$p(k) = Ck^{-\alpha} \quad \forall k > k_{\min}$$

・ロト ・四ト ・ヨト ・ヨト

- 2

How do we know that a given distribution is a power-law? (For $k > k_{\min}$)

Creating a log-log plot

Power-law is tricky!

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

- ▶ Logarthmic binning: next bin is fixed multiple wider than the previous one
- Better but still noisy

Cumulative distribution

$$P(k) = \sum_{k'=k}^{\infty} p(k')$$

$$P(k) = C \sum_{k'=k}^{\infty} k'^{-\alpha} \approx C \int_{k}^{\infty} k'^{-\alpha} dk' = \frac{C}{\alpha - 1} k^{-(\alpha - 1)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A portion of the internet 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

¹Taken from the website of Mark Newman

Calculation of the scaling exponent

$$\alpha = 1 + \frac{N}{\left[\sum_{i} \frac{k_i}{k_{\min} - \frac{1}{2}}\right]}$$

Statistical error on α

$$\sigma = \frac{\alpha - 1}{\sqrt{N}}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Validating power-laws

"Power-law distributions in empirical data." Clauset, Shalizi, and Newman. SIAM review 51.4 (2009): 661-703.

Assortative mixing

Assortative mixing

Social network of school-children with two races: Black and White

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assortative mixing

► Social networks: race, age, physical locations, language, income, educational level

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

- Citation networks: topics of the study
- World Wide Web: contents of the webpages
- Internet: physical locations
Assortative mixing by enumerative characteristics

- Characteristics with a finite set of values
- ► No ordering
- ▶ Nationality, Gender, Race

Assortative mixing by scalar characteristics

ション ふゆ マ キャット マックシン

- ▶ Characteristics with a finite or infinite set of values
- Ordering
- ▶ Age, income, degree

Assortative mixing by enumerative characteristics

- Characteristics with a finite set of values
- ► No ordering
- ▶ Nationality, Gender, Race

Assortative mixing by scalar characteristics

ション ふゆ マ キャット マックシン

- ▶ Characteristics with a finite or infinite set of values
- Ordering
- ▶ Age, income, degree

The network is **assortative** if a large fraction of the edges fall between vertices of the same type

If the opposite is true, the network is called **dissortative**

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

◆□ → <個 → < = → < = → = のへで</p>

▶ Fraction of edges connecting vertices of the same type?

- ▶ Fraction of edges connecting vertices of the same type?
- Maximize: Actual number of edges between the same type minus the number of expected edges between the same types

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- ▶ Fraction of edges connecting vertices of the same type?
- Maximize: Actual number of edges between the same type minus the number of expected edges between the same types

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▶ Has value 0 in trivial cases

Number of edges between the same types

 c_i : the class or type of vertex i

 n_c : total number of types

Total number of edges between the vertices of the same type:

$$\sum_{\text{edges}(i,j)} \delta(i,j) = \frac{1}{2} \sum_{i,j} A_{ij} \delta(c_i, c_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Expected number of edges between the same types

- ▶ Half-edges or stubs, degrees preserved
- ▶ For a given stub at vertex i, there are 2m 1 stubs to which it can connect to
- Probability of connecting vertex j is $\frac{k_j}{2m}$
- Expected number of edges between *i* and *j* is $\frac{k_i k_j}{2m-1}$
- Expected number of edges between all the pairs of the same type:

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(c_i,c_j)$$

(日) (日) (日) (日) (日) (日) (日) (日)

$$\frac{1}{2}\sum_{i,j}A_{ij}\delta(c_i, c_j) - \frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(c_i, c_j) = \frac{1}{2}\sum_{ij}\left(A_{ij} - \frac{k_ik_j}{2m}\right)\delta(c_i, c_j)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

$$\frac{1}{2}\sum_{i,j}A_{ij}\delta(c_i, c_j) - \frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(c_i, c_j) = \frac{1}{2}\sum_{ij}\left(A_{ij} - \frac{k_ik_j}{2m}\right)\delta(c_i, c_j)$$

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

Q is called the **modularity** of the network w.r.t. to c

$$B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$$

Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

$$Q_{\max} = \frac{1}{2m} \left(2m - \sum_{ij} \frac{k_i k_j}{2m} \delta(c_i, c_j) \right)$$

Normalized modularity

Modularity is not 1 even for a perfectly mixed network.

$$Q_{\max} = \frac{1}{2m} \left(2m - \sum_{ij} \frac{k_i k_j}{2m} \delta(c_i, c_j) \right)$$

Quantification for scalar characteristics

 x_i : a scalar value for vertex i

$$r = \frac{\sum_{ij} (A_{ij} - k_i k_j/2m) x_i x_j}{\sum_{ij} (k_i \delta_{ij} - k_i k_j/2m) x_i x_j}$$

Degree-correlations/Degree-assortativity

- ▶ Using degree itself as a scalar property of the nodes
- Degree is the property of the network structure
- One property (degree) dictating the others (position of the edges)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Network	n	r
Physics coauthorship (a)	52 909	0.363
Biology coauthorship (a)	1 520 251	0.127
Mathematics coauthorship (b)	253 339	0.120
Film actor collaborations (c)	449913	0.208
Company directors (d)	7 673	0.276
Internet (e)	10697	-0.189
World-Wide Web (f)	269 504	-0.065
Protein interactions (g)	2115	-0.156
Neural network (h)	307	-0.163
Marine food web (i)	134	-0.247
Freshwater food web (j)	92	-0.276

²Newman, M.E.J., Assortative Mixing in Networks, PRL, 89, 20. \mathbb{R}

Random graph models

- Better way to describe the structure of the networks
- ▶ Generative models of networks
- ▶ Probabilistic models capable of generating an observed data

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

▶ Certain properties can be fixed for generative models

- Mean of x = 9
- Variance of x = 11
- Mean of y = 7.5
- Variance of y = 4.125
- Correlation = 0.816

ション ふゆ く は く は く む く む く し く

Anscombe's quartet!

Random graph models (RGMs)

- Erdős-Rényi model
- Configuration model
- Stochastic-block model
- ▶ Degree-corrected SBM
- Equitable random graphs
- Hierarchical block models
- ▶ Random graphs with expected degrees

ション ふゆ マ キャット マックシン

- Microcanonical SBM
- Poisson SBM

Erdős-Rényi model (ER model/G(n, p))

- Fix n and the average degree c
- Connect every pair of nodes with a probability $p = \frac{c}{n-1}$
- Number of graphs in the ensemble: $2^{\binom{n}{2}}$
- ▶ ER model: Every member of the ensemble is equally likely

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Properties of the ER model

Average properties of the ensemble

$$=\sum_{G}P(G)m(G)=\frac{1}{\Omega}\sum_{G}m(G)$$

Properties of the ER model

Degree distribution

- Given vertex can connect to remaining n-1 vertices
- Probability of connecting to particular k vertices:

$$p^k(1-p)^{n-1-k}$$

• There are $\binom{n-1}{k}$ ways to choose k vertices

$$p_k = \binom{n-1}{k} p^k (1-p)^{n-1-k} = e^{-c} \frac{c^k}{k!}$$

The giant component

What is the size of the largest component?

・ロト ・個ト ・ヨト ・ヨト 三臣

The giant component

- Giant component: size is an extensive function of the network size
- Transition between the two extremes with p: gradual or sudden?
- Size of the giant component as a function of p can be calculated exactly in the limit

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 \boldsymbol{u} : Fraction of vertices not in the giant component

When is a vertex i not in the giant component?

For any other vertex j:

- 1. i is not connected to j
- 2. i is connected to j but j is not in the giant component

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The giant component

 \boldsymbol{u} : Fraction of vertices not in the giant component

When is a vertex i not in the giant component?

For any other vertex j:

- 1. *i* is not connected to $j \Rightarrow$ **probability** = 1 p
- 2. *i* is connected to *j* but *j* is not in the giant component \Rightarrow **probability** = *pu*

Thus, the probability of not being connected to the giant component through vertex j is (1 - p + pu)

(日) (日) (日) (日) (日) (日) (日) (日)

$$u = (1 - p + pu)^{n-1}$$

$$u = \left(1 - \frac{c}{n-1} + p\frac{c}{n-1}\right)^{n-1} = \left[1 - \frac{c}{n-1}(1-u)\right]^{n-1}$$
$$u = e^{-c(1-u)}$$

Let S be the size of the giant component

$$\therefore 1 - S = e^{-cS}$$

Graphical solution for the giant component

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\left.\frac{d}{dS}(1-e^{-cS})\right|_{S=0} = 1$$

$$\therefore c e^{-cS}\Big|_{S=0} = 1$$

$$\therefore c = 1$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

c < 1 and c > 1

Network science researchers

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Small components

596

Two giant components?

Distinct pairs (i, j) with i in S_1 and j in S_2 : $S_1n \times S_2n = S_1S_2n^2$

Probability that there is no edge between the two:

$$q = (1-p)^{S_1 S_2 n^2} = \left(1 - \frac{c}{n-1}\right)^{S_1 S_2 n^2} \sim e^{-cS_1 S_2 n}$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

Sizes of the small components

π_s : probability that a randomly chosen vertex belongs to component of size s

$$\sum_{s=1}^{\infty} = 1 - S$$

Small-components are trees!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Tree graph

- ► A graph without loops
- ▶ n vertices and n-1 edges
- Removal of any vertex or edge witll disconnect the graph

・ロト ・四ト ・ヨト ・ヨト

3

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト 一 国 - つんの

Small components

Small components are trees

$$\binom{s}{2} - (s-1) = \frac{1}{2}(s-1)(s-2)$$

The total number of extra edges:

$$\frac{1}{2}(s-1)(s-2)\frac{c}{n-1} \to 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For degree 3 vertex,

$$P(s|k=3) = \pi_{s_1}\pi_{s_2}\pi_{s_3}$$
$$s_1 + s_2 + s_3 = s - 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For degree 3 vertex,

$$P(s|k=3) = \pi_{s_1}\pi_{s_2}\pi_{s_3}$$
$$s_1 + s_2 + s_3 = s - 1$$
$$P(s|k) = \sum_{s_1=0}^{\infty} \sum_{s_2=0}^{\infty} \cdots \sum_{s_k=0}^{\infty} \left[\prod_{j=1}^k \pi_{s_j}\right] \delta(s-1, \sum_j s_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For degree 3 vertex,

$$P(s|k = 3) = \pi_{s_1} \pi_{s_2} \pi_{s_3}$$

$$s_1 + s_2 + s_3 = s - 1$$

$$P(s|k) = \sum_{s_1=0}^{\infty} \sum_{s_2=0}^{\infty} \cdots \sum_{s_k=0}^{\infty} \left[\prod_{j=1}^k \pi_{s_j} \right] \delta(s - 1, \sum_j s_j)$$

$$\pi_s = \sum_{k=0}^{\infty} p_k P(s|k)$$

$$< s >= \sum_{s=0}^{\infty} s \pi_s$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$< s >= \frac{1}{1-c+cS}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

$$\langle s \rangle = \frac{1}{1 - c + cS}$$

$$R = \frac{2}{2 - c + cS}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ Ξ - のへで

$$< s >= \frac{1}{1 - c + cS}$$

$$R = \frac{2}{2 - c + cS}$$

$$R = \frac{2}{2 - c + cS}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ Ξ - のへで

- ▶ Model with a given degree sequence
- ▶ More realistic and more flexible
- Can be solved exactly in the limit

・ロト ・ 日 ・ モー・ モー・ うへぐ

• Specify
$$k_i$$
 for $i = 1, 2, \cdots, n$

 Every vertex i has k_i half-edges/stubs

•
$$\sum_{i} k_i = 2m$$

- Randomly connect stubs to each other
- Every matching appears with equal probability

うして ふゆう ふほう ふほう ふしつ

Do all graphs appear with equal probability?

Do all graphs appear with equal probability?

More than one matchings can correspond to the same graph

・ロト ・ 西ト ・ ヨト ・ 日 ・

э.

Number of matchings for the network N: $N(\{k_i\}) = \prod_i k_i!$

Thus, networks do occur with equal probability!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$N = \frac{\prod_i k_i!}{\prod_{i < j} A_{ij}! \prod_i A_{ii}!!}$$

$$n!! = n(n-2)(n-4)\cdots 2$$

Graphs do not appear with equal probability!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

- ▶ Many real networks have fat-tailed degree distributions
- ▶ Naturally occuring networks tend be dissortative by degree
- ▶ Social networks tend to be assortative by degree
- Random graphs provide a powerful way to describe the large-scale structure of complex networks

www.snehalshekatkar.com/serc2018

(日) (日) (日) (日) (日) (日) (日) (日)