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Community structure in networks

What are communities?

I Traditional definition: Groups of nodes with a high
internal link density

I Modern definition: Nodes with similar connection
probabilities to the rest of the network



Communities in the real-world networks

I Social networks:
I Friend-circles
I Research communities
I Co-workers

I World Wide Web:
I Pages with similar contents
I Webpages under the same domain (e.g. Wikipedia)

I Biological networks:
I Proteins with similar roles in protein interaction networks
I Chemicals together taking part in chemical reactions in

metabolic networks
I Communities in neuronal networks



Community detection

Detecting communities is
important!

I Communities are building blocks of

networks

I Communities allow us to see “the big

picture”

I Functional/Autonomous units

I Non-trivial effects on the processes

on networks



Graph partitioning

Problem of dividing a graph in a given number of groups of
given sizes such that the number of links between the groups

(cut size) is minimized
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Partitioning is hard!

I Graph with n vertices

I Find two groups with sizes n1 and n2 such that the cut size
is minimum

I Number of ways: n!
n1!n2! ≈

2n+1
√
n

Heuristics are needed!



Kernighan-Lin algorithm
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Kernighan-Lin algorithm
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I Go through all the states and
select the one with the least cut
size

I Start with this state and repeat
the whole procedure

I Continue till the cut size no
longer becomes smaller

I Starting with many random
initial conditions is better



Spectral partitioning

I Faster algorithm than Kernighan-Lin

I Uses properties of the graph Laplacian

I More complex to implement than Kernighan-Lin



Spectral partitioning

Cut size:

R =
1

2

∑
i,j in

different
groups

Aij

Define

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

Then

1

2
(1− sisj) =

{
1 if i and j are in different groups,

0 if i and j are in the same group



Spectral partitioning

R =
1

4

∑
ij

Aij(1− sisj)

First term,∑
ij

Aij =
∑
i

ki =
∑
i

kis
2
i =

∑
ij

kiδijsisj

R =
1

4

∑
ij

(kiδij −Aij)sisj =
1

4

∑
ij

Lijsisj

R =
1

4
sTLs



Relaxation method

Two constraints:

I si can be only ±1

I
∑
i
si = n1 − n2 ⇒ 1T s = n1 − n2

Relax the first constraint



Spectral partitioning

Minimization with constraints ⇒ Lagrange multipliers

∂

∂si

∑
jk

Ljksjsk + λ

n−∑
j

s2
j

+ 2µ

(n1 − n2)−
∑
j

sj

 = 0

∑
j

Lijsj = λsi + µ

Ls = λs + µ1 = λ
(
s +

µ

λ
1
)

L
(
s +

µ

λ
1
)

= λ
(
s +

µ

λ
1
)

1 is an eigenvector of the Laplacian with eigenvalue 0

Lx = λx
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Spectral partitioning

x is an eigenvector of the Laplacian with eigenvalue λ

Which eigenvector to choose?

x cannot be the eigenvector 1 =


1
1
.
.
1


1Tx = 1

(
s +

µ

λ
1
)

= (n1 − n2) +
µ

λ
n = 0



Spectral partitioning

Which eigenvector to choose?

R =
1

4
sTLs =

1

4
xTx =

n1n2

n
λ

Choose the eigenvector with smallest possible eigenvalue!

Eigenvalues of the Laplacian are non-negative and smallest is
always 0

v1 = 1 is ruled out already. So choose v2 with the smallest
positive eigenvalue



Spectral partitioning

s = x+
n1 − n2

n
1

OR

si = xi +
n1 − n2

n

But si can be only ±1

Thus, we want x to be as close as possible to s



Spectral partitioning

Maximize:

sT
(

x +
n1 − n2

n
1

)
=
∑
i

si

(
xi +

n1 − n2

n

)
Equivalently, maximize:∑

i

sixi

Simply put the n1 vertices with most positive elements in group
1 and the rest ones in group 2

Group assignments are arbitrary



Spectral partitioning

I Calculate v2 of the Laplacian

I Put vertices corresponding to largest n1 elements in group
1 and others in group 2. Calculate the cut size

I Put vertices corresponding to smallest n1 elements in group
1 and others in group 2. Calculate the cut size

I Choose the division with the smallest cut size among the
two



Community detection is harder!

I Graph partitioning
I well defined

I Number of groups is fixed

I Sizes of the groups are fixed

I Divide even if no good division exists

I Community detection
I ill-defined

I Number of groups depends on the structure of the network

I Sizes of the groups depend on the structure of the network

I Discover natural fault lines



Many definitions.. many algorithms!

I Girvan-Newman algorithm

I Kernighan-Lin-Newman algorithm

I Spectral decomposition

I Clique-percolation

I Radom walk methods

I Statistical inference

I Label propagation

I Hierarchical clustering



Broad classification

I Agglomerative algorithms:

I Hierarchical clustering

I Louvain method

I CNM algorithm

I Divisive algorithms:

I Girvan-Newman algorithm

I Radichhi algorithm

I Assignment algorithms:

I Label propagation

I Spectral partitioning

I Kernighan-Lin-Newman algorithm



“The” simplest community detection problem

I Bisecting a graph with n nodes

I Group sizes are not fixed

I Minimum cut size?

I Trivial partition

I Needs ad hoc specification of sizes

A different measure of the quality of division is
required..
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Quantification of community structure

I Fewer than expected edges between the groups

I Equivalently, more than expected edges inside the groups

I Assortativity mixing and modularity

I Look for divisions with high modularity
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Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required
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Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes
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Zachry karate club network
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Actual division

Division by KLN algorithm
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Spectral modularity maximization

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
=

1

2m

∑
ij

Bijδ(ci, cj)

Note that:∑
j

Bj =
∑
j

Aij −
ki
2m

∑
j

kj = ki −
ki
2m

2m = 0



Spectral modularity maximization

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

1

2
(1 + sisj) =

{
1 if i and j belong to the same group

0 Otherwise

B =
1

2m

∑
ij

Bijδ(ci, cj) =
1

4m

∑
ij

Bij(1+sisj) =
1

4m

∑
ij

Bijsisj

Q =
1

4m
sTBs
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Spectral modularity maximization

Relaxation method

I Numbers of elements with values
+1 and −1 are not fixed

I Only constraint: sT s =
∑
i
s2
i = n

∂

∂si

∑
ij

Bjksjsk + β

n−∑
j

s2
j

 = 0

∑
j

Bijsj = βsi

Bs = βs



Spectral modularity maximization

Q =
1

4m
βsTBs =

1

4m
βsT s =

n

4m
β

Thus, choose s to be the eigenvector u1 corresponding to the
largest eigenvalue of the modularity matrix

Maximize:

sTu1 =
∑
i

siu1i

Maximum is achieved when each term is non-negative ⇒ Use
signs of u1i!



Spectral modularity maximization

I Calculate the modularity matrix

I Calculate its eigenvector corresponding to the largest
eigenvalue

I Assign nodes to communities based on the signs of elements



Application to karate club network



Bottlenose dolphins

1

1Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM
(2003) Behav Ecol Sociobiol 54:396405
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Bottlenose dolphins

3

3Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM
(2003) Behav Ecol Sociobiol 54:396405



Newman-Girvan algorithm

I Look for edges between the communities

I Edge betweenness



Edge betweenness

I Path between two nodes

I Shortest path between two nodes

I Number of shortest paths that go
through a given edge
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The algorithm

I Calculate betweenness for all edges

I Remove the edge with the highest betweenness

I Recalculate betweenness for all edges

I Repeat



Girvan-Newman algorithm
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Problems with traditional community detection
algorithms

I Degeneracy

I Resolution limit

I Structure vs Noise



Degeneracy

4

4Good et al., Performance of modularity in practical contexts, PRE 81,
046106 (2010).



Resolution limit

I Maximizing the modularity can fail to resolve small sized
modules

I Modular structures like cliques can be hidden in the larger
groups of nodes with higher modularity score

I Peak of the modularity function may not coincide with
divisions that identify such modular structures

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Contribution of the group s,

Qs =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, s)δ(cj , s) =

es
m
−
(
ds
2m

)2



Resolution limit

The group s is a module whenever Qs > 0⇒ es
m >

(
ds
2m

)2
Consider two modules s1 and s2 with es1s2 edges between them
The change in modularity if we merge these:

4Qs1s2 =
es1s2
m
− 2

(
ds1
2m

)(
ds2
2m

)
> 0

whenever:

es1s2 >
ds1ds2

2m
→ 0

Thus, modules would be merged even when the number of links
es1s2 between them is small! 5

5Fortunato, Barthelemy, Resolution limit in community detection,
PNAS, (2006)



Structure vs Noise

6

6Tiago Peixoto, Bayesian stochastic blockmodeling



Conclusions

I Community structure is a fundamental property of
networks

I Community detection is an ill-defined problem

I (Too) many algorithms exist

I Community detection is still an open problem!
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