
Large-scale structure of complex networks
(Part 2)

Snehal M. Shekatkar

Centre for modeling and simulation,
S.P. Pune University, Pune



Community structure in networks



Community structure in networks



Community structure in networks

What are communities?

I Traditional definition: Groups of nodes with a high
internal link density

I Modern definition: Nodes with similar connection
probabilities to the rest of the network



Communities in the real-world networks

I Social networks:
I Friend-circles
I Research communities
I Co-workers

I World Wide Web:
I Pages with similar contents
I Webpages under the same domain (e.g. Wikipedia)

I Biological networks:
I Proteins with similar roles in protein interaction networks
I Chemicals together taking part in chemical reactions in

metabolic networks
I Communities in neuronal networks



Community detection

Detecting communities is
important!

I Communities are building blocks of

networks

I Communities allow us to see “the big

picture”

I Functional/Autonomous units

I Non-trivial effects on the processes

on networks



Graph partitioning

Problem of dividing a graph in a given number of groups of
given sizes such that the number of links between the groups

(cut size) is minimized



Graph partitioning

Problem of dividing a graph in a given number of groups of
given sizes such that the number of links between the groups

(cut size) is minimized



Partitioning is hard!

I Graph with n vertices

I Find two groups with sizes n1 and n2 such that the cut size
is minimum

I Number of ways: n!
n1!n2! ≈

2n+1
√
n

Heuristics are needed!



Kernighan-Lin algorithm

cut size = 4

0

1

2

3

4

5

6

7

8

9

10

11
I Divide the vertices into two

groups of the required sizes

and calculate the cut size

I Find a pair of nodes which

when switched, will reduce

the cut size most and switch

them



Kernighan-Lin algorithm

cut size = 4

0

1

2

3

4

5

6

7

8

9

10

11
I Divide the vertices into two

groups of the required sizes

and calculate the cut size

I Find a pair of nodes which

when switched, will reduce

the cut size most and switch

them



Kernighan-Lin algorithm

cut size = 2

0

1

2

3

4

5

6

7

8

9

10

11

I Divide the vertices into two

groups of the required sizes

I Find a pair of nodes which

when switched, will reduce

the cut size most and switch

them

I If no such pair exists, select

the pair which least increases

the cut size

I Continue this such that the

already switched pair is not

switched again



Kernighan-Lin algorithm

cut size = 2

0

1

2

3

4

5

6

7

8

9

10

11

I Divide the vertices into two

groups of the required sizes

I Find a pair of nodes which

when switched, will reduce

the cut size most and switch

them

I If no such pair exists, select

the pair which least increases

the cut size

I Continue this such that the

already switched pair is not

switched again



Kernighan-Lin algorithm

cut size = 2

0

1

2

3

4

5

6

7

8

9

10

11

I Divide the vertices into two

groups of the required sizes

I Find a pair of nodes which

when switched, will reduce

the cut size most and switch

them

I If no such pair exists, select

the pair which least increases

the cut size

I Continue this such that the

already switched pair is not

switched again



Kernighan-Lin algorithm

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.05

4

3

2

1

0

1

2

3

I Go through all the states and
select the one with the least cut
size

I Start with this state and repeat
the whole procedure

I Continue till the cut size no
longer becomes smaller

I Starting with many random
initial conditions is better



Spectral partitioning

I Faster algorithm than Kernighan-Lin

I Uses properties of the graph Laplacian

I More complex to implement than Kernighan-Lin



Spectral partitioning

Cut size:

R =
1

2

∑
i,j in

different
groups

Aij

Define

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

Then

1

2
(1− sisj) =

{
1 if i and j are in different groups,

0 if i and j are in the same group



Spectral partitioning

R =
1

4

∑
ij

Aij(1− sisj)

First term,∑
ij

Aij =
∑
i

ki =
∑
i

kis
2
i =

∑
ij

kiδijsisj

R =
1

4

∑
ij

(kiδij −Aij)sisj =
1

4

∑
ij

Lijsisj

R =
1

4
sTLs



Relaxation method

Two constraints:

I si can be only ±1

I
∑
i
si = n1 − n2 ⇒ 1T s = n1 − n2

Relax the first constraint



Spectral partitioning

Minimization with constraints ⇒ Lagrange multipliers

∂

∂si

∑
jk

Ljksjsk + λ

n−∑
j

s2
j

+ 2µ

(n1 − n2)−
∑
j

sj

 = 0

∑
j

Lijsj = λsi + µ

Ls = λs + µ1 = λ
(
s +

µ

λ
1
)

L
(
s +

µ

λ
1
)

= λ
(
s +

µ

λ
1
)

1 is an eigenvector of the Laplacian with eigenvalue 0

Lx = λx



Spectral partitioning

Minimization with constraints ⇒ Lagrange multipliers

∂

∂si

∑
jk

Ljksjsk + λ

n−∑
j

s2
j

+ 2µ

(n1 − n2)−
∑
j

sj

 = 0

∑
j

Lijsj = λsi + µ

Ls = λs + µ1 = λ
(
s +

µ

λ
1
)

L
(
s +

µ

λ
1
)

= λ
(
s +

µ

λ
1
)

1 is an eigenvector of the Laplacian with eigenvalue 0

Lx = λx



Spectral partitioning

Minimization with constraints ⇒ Lagrange multipliers

∂

∂si

∑
jk

Ljksjsk + λ

n−∑
j

s2
j

+ 2µ

(n1 − n2)−
∑
j

sj

 = 0

∑
j

Lijsj = λsi + µ

Ls = λs + µ1 = λ
(
s +

µ

λ
1
)

L
(
s +

µ

λ
1
)

= λ
(
s +

µ

λ
1
)

1 is an eigenvector of the Laplacian with eigenvalue 0

Lx = λx



Spectral partitioning

x is an eigenvector of the Laplacian with eigenvalue λ

Which eigenvector to choose?

x cannot be the eigenvector 1 =


1
1
.
.
1


1Tx = 1

(
s +

µ

λ
1
)

= (n1 − n2) +
µ

λ
n = 0



Spectral partitioning

Which eigenvector to choose?

R =
1

4
sTLs =

1

4
xTx =

n1n2

n
λ

Choose the eigenvector with smallest possible eigenvalue!

Eigenvalues of the Laplacian are non-negative and smallest is
always 0

v1 = 1 is ruled out already. So choose v2 with the smallest
positive eigenvalue



Spectral partitioning

s = x+
n1 − n2

n
1

OR

si = xi +
n1 − n2

n

But si can be only ±1

Thus, we want x to be as close as possible to s



Spectral partitioning

Maximize:

sT
(

x +
n1 − n2

n
1

)
=
∑
i

si

(
xi +

n1 − n2

n

)
Equivalently, maximize:∑

i

sixi

Simply put the n1 vertices with most positive elements in group
1 and the rest ones in group 2

Group assignments are arbitrary



Spectral partitioning

I Calculate v2 of the Laplacian

I Put vertices corresponding to largest n1 elements in group
1 and others in group 2. Calculate the cut size

I Put vertices corresponding to smallest n1 elements in group
1 and others in group 2. Calculate the cut size

I Choose the division with the smallest cut size among the
two



Community detection is harder!

I Graph partitioning
I well defined

I Number of groups is fixed

I Sizes of the groups are fixed

I Divide even if no good division exists

I Community detection
I ill-defined

I Number of groups depends on the structure of the network

I Sizes of the groups depend on the structure of the network

I Discover natural fault lines



Many definitions.. many algorithms!

I Girvan-Newman algorithm

I Kernighan-Lin-Newman algorithm

I Spectral decomposition

I Clique-percolation

I Radom walk methods

I Statistical inference

I Label propagation

I Hierarchical clustering



Broad classification

I Agglomerative algorithms:

I Hierarchical clustering

I Louvain method

I CNM algorithm

I Divisive algorithms:

I Girvan-Newman algorithm

I Radichhi algorithm

I Assignment algorithms:

I Label propagation

I Spectral partitioning

I Kernighan-Lin-Newman algorithm



“The” simplest community detection problem

I Bisecting a graph with n nodes

I Group sizes are not fixed

I Minimum cut size?

I Trivial partition

I Needs ad hoc specification of sizes

A different measure of the quality of division is
required..



“The” simplest community detection problem

I Bisecting a graph with n nodes

I Group sizes are not fixed

I Minimum cut size?

I Trivial partition

I Needs ad hoc specification of sizes

A different measure of the quality of division is
required..



Quantification of community structure

I Fewer than expected edges between the groups

I Equivalently, more than expected edges inside the groups

I Assortativity mixing and modularity

I Look for divisions with high modularity



Quantification of community structure

I Fewer than expected edges between the groups

I Equivalently, more than expected edges inside the groups

I Assortativity mixing and modularity

I Look for divisions with high modularity



Quantification of community structure

I Fewer than expected edges between the groups

I Equivalently, more than expected edges inside the groups

I Assortativity mixing and modularity

I Look for divisions with high modularity



Quantification of community structure

I Fewer than expected edges between the groups

I Equivalently, more than expected edges inside the groups

I Assortativity mixing and modularity

I Look for divisions with high modularity



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Modularity

How to find the division which maximizes the modularity?

I Check the value of Q for all possible divisions and choose
the best one

I Consider, N = 100, n1 = n2 = 50

I Total possible divisions = 100C50 > 1029

I With a fast computer which checks 100 billion divisions per
second: 3× 1010 years!

I Clever heuristics are required



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes



Kernighan-Lin-Newman algorithm

I Start with a random division of the nodes

I Change in modularity for shifting each vertex to the other
group

I Choose vertex whose shift makes maximum modularity
change

I If no such vertex exists, choose the one resulting in the
least decrease in the modularity

I Repeat so that the vertex once moved is not moved again

I Select a state with the highest modularity

I Repeat the whole process starting with this state till the
modularity stabilizes





Zachry karate club network



Application to Zachry karate club

Actual division

Division by KLN algorithm



Application to Zachry karate club

Actual division Division by KLN algorithm



Spectral modularity maximization

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
=

1

2m

∑
ij

Bijδ(ci, cj)

Note that:∑
j

Bj =
∑
j

Aij −
ki
2m

∑
j

kj = ki −
ki
2m

2m = 0



Spectral modularity maximization

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

1

2
(1 + sisj) =

{
1 if i and j belong to the same group

0 Otherwise

B =
1

2m

∑
ij

Bijδ(ci, cj) =
1

4m

∑
ij

Bij(1+sisj) =
1

4m

∑
ij

Bijsisj

Q =
1

4m
sTBs



Spectral modularity maximization

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

1

2
(1 + sisj) =

{
1 if i and j belong to the same group

0 Otherwise

B =
1

2m

∑
ij

Bijδ(ci, cj) =
1

4m

∑
ij

Bij(1+sisj) =
1

4m

∑
ij

Bijsisj

Q =
1

4m
sTBs



Spectral modularity maximization

si =

{
+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

1

2
(1 + sisj) =

{
1 if i and j belong to the same group

0 Otherwise

B =
1

2m

∑
ij

Bijδ(ci, cj) =
1

4m

∑
ij

Bij(1+sisj) =
1

4m

∑
ij

Bijsisj

Q =
1

4m
sTBs



Spectral modularity maximization

Relaxation method

I Numbers of elements with values
+1 and −1 are not fixed

I Only constraint: sT s =
∑
i
s2
i = n

∂

∂si

∑
ij

Bjksjsk + β

n−∑
j

s2
j

 = 0

∑
j

Bijsj = βsi

Bs = βs



Spectral modularity maximization

Q =
1

4m
βsTBs =

1

4m
βsT s =

n

4m
β

Thus, choose s to be the eigenvector u1 corresponding to the
largest eigenvalue of the modularity matrix

Maximize:

sTu1 =
∑
i

siu1i

Maximum is achieved when each term is non-negative ⇒ Use
signs of u1i!



Spectral modularity maximization

I Calculate the modularity matrix

I Calculate its eigenvector corresponding to the largest
eigenvalue

I Assign nodes to communities based on the signs of elements



Application to karate club network



Bottlenose dolphins

1

1Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM
(2003) Behav Ecol Sociobiol 54:396405



Bottlenose dolphins

2

2Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM
(2003) Behav Ecol Sociobiol 54:396405



Bottlenose dolphins

3

3Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM
(2003) Behav Ecol Sociobiol 54:396405



Newman-Girvan algorithm

I Look for edges between the communities

I Edge betweenness



Edge betweenness

I Path between two nodes

I Shortest path between two nodes

I Number of shortest paths that go
through a given edge

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



The algorithm

I Calculate betweenness for all edges

I Remove the edge with the highest betweenness

I Recalculate betweenness for all edges

I Repeat



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Girvan-Newman algorithm

Snehal

Abhijit

Shishir

Kailas

Yogesh

Vikram

Mangesh

Sachin

Pankaj

Pritesh



Problems with traditional community detection
algorithms

I Degeneracy

I Resolution limit

I Structure vs Noise



Degeneracy

4

4Good et al., Performance of modularity in practical contexts, PRE 81,
046106 (2010).



Resolution limit

I Maximizing the modularity can fail to resolve small sized
modules

I Modular structures like cliques can be hidden in the larger
groups of nodes with higher modularity score

I Peak of the modularity function may not coincide with
divisions that identify such modular structures

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj)

Contribution of the group s,

Qs =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, s)δ(cj , s) =

es
m
−
(
ds
2m

)2



Resolution limit

The group s is a module whenever Qs > 0⇒ es
m >

(
ds
2m

)2
Consider two modules s1 and s2 with es1s2 edges between them
The change in modularity if we merge these:

4Qs1s2 =
es1s2
m
− 2

(
ds1
2m

)(
ds2
2m

)
> 0

whenever:

es1s2 >
ds1ds2

2m
→ 0

Thus, modules would be merged even when the number of links
es1s2 between them is small! 5

5Fortunato, Barthelemy, Resolution limit in community detection,
PNAS, (2006)



Structure vs Noise

6

6Tiago Peixoto, Bayesian stochastic blockmodeling



Conclusions

I Community structure is a fundamental property of
networks

I Community detection is an ill-defined problem

I (Too) many algorithms exist

I Community detection is still an open problem!

www.snehalshekatkar.com/serc2018

www.snehalshekatkar.com/serc2018

